The module IPN inPROC of our IoT platform is used to predict product- & process quality. Complementary, inPROC recommends adjustments to production parameters to reach a specified target quality.

In contrast to the module IPN inCARE, this module uses process & status data for its predictions which are collected only once / a few times (representative spot samples) during a production run or a batch. In that case the data has to be transformed according to the requirements and assigned to the event which shall be predicted. The transformation and the assignment is performed by our module IPN inPOLL.


Same as for the module IPN inCARE the prediction models can be developed and deployed both by IPN or directly by the user himself. In case you do not plan to develop the predictive models yourself IPN is offering “model development” as a service. The model development is based on the IPN methodology which is the basis of all our consulting services.

IPN inPROC is used in IPN projects to help reduce scrap production in a batch production, to optimize the rigging phase of a production machine and for to optimise process control of a chemical reactor.